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A b s t r a c t  

An efficient algebraic algorithm is described for 
determining unit cells. It can be directly implemented 
on a digital computer. Two practical examples of its use 
are given: the determination of a unit cell on the (hkI) 
plane and the enumeration of the lattice points 
contained in a non-primitive cell. Both examples can be 
performed easily by hand; when performed by com- 
puter, they achieve a considerably higher computa- 
tional speed than any other known methods. 

It is often useful to find the largest primitive unit cell 
consistent with a given set of lattice vectors. An obvious 
case is the automatic determination of the unit cell of a 
reciprocal lattice from a limited number of diffraction 
spots. Two further examples which will be discussed 
below are the determination of the unit cell of the lattice 
which lies on the (hkl) plane and the enumeration of the 
lattice points which lie in a non-primitive cell. The 
former problem was discussed by Jaswon & Dove 
(1958) with reference to twin planes. The solution to the 
latter is useful in the control of area-detector 
diffractometers (Arndt & Gilmore, 1979). 

The method described here for finding primitive unit 
cells is a generalization of Euclid's algorithm for finding 
highest common divisors (Hardy & Wright, 1979) 
extended to any number of dimensions. No such 
generalization appears to have been published before. 
To find the highest common divisor of a set of numbers 
by Euclid's algorithm, we repeatedly replace the largest 
number in the set by its remainder after division by the 
smallest non-zero one. When only one non-zero number 
remains, it is the highest common divisor. The 
remainder of one number after division by another is 
formally equivalent to the least non-negative residue of 
the first number modulo the second, expressed explicitly 
as 

where P is the least residue of p modulo a and frc is a 
function whose value is the fractional part of its 
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argument, and is always taken to be positive: thus 
frc (3) = 0, frc (4¼) = ¼, frc (-5~) = ~. 

This equation can be generalized to any number of 
dimensions in the obvious fashion: 

P= a frc (a-1 p), (1) 

where the columns of a represent the vectors which 
define the edges of a unit cell and P is the point inside 
that cell which is crystallographically equivalent to p 
and therefore related to it by a lattice vector (Fig. 1). 

The matrix a -1 is the (generalized) inverse of a. It 
always exists and is unique, being defined (Penrose, 
1955) by the equations: 

aa -1 a = a, a - I  aa -1 = a -1, 

(aa-1)  t = a a  -1, (a - l a )  t = a  - l a ,  

where (aa-1) t represents the conjugate transpose of 
aa -k  The normal matrix, fia, where fi represents the 
transpose of a will be non-singular for all matrices, a, 
representing unit cells. Its general inverse is equal to the 
familiar inverse: 

( f i a ) - I  = 

Therefore, the equation 

adj (fia) 

det(fia)" 

a - 1  = ( f i a )  -1  

is a suitable means for calculating a -I in practice. 

Fig. 1. P and p are crystallographically equivalent points since they 
are related by a lattice vector. The indices of P are all between 0 
and 1. 
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With (1), Euclid's algorithm can be generalized to 
find a primitive unit cell of the lattice defined by a 
redundant set of vectors (Fig. 2). 

The first step is to create the largest matrix, a, whose 
columns are linearly independent vectors chosen from 
the set. A primitive unit cell can then be found by the 
following steps. 

[1] Replace one of the vectors which remains in the 
set but which does not form a column of a with its least 
residue (modulo a) as defined by (1). If that is the null 
vector, 0, remove it from the set and go to step [2]. 
Otherwise exchange that residue with any column of a 
so that the columns remain linearly independent. 

[2] If there are still any vectors in the set which do 
not form a column of a, go back to step [1]. The 
remaining vectors represent the edges of a primitive unit 
cell when they are all columns of a. 

Two examples of the use of this algorithm are given. 
The first is an alternative approach to the twin-plane 
problem discussed by Jaswon & Dove (1958), which is 
more appropriate for automatic computation by a 
digital computer. It also has the advantage of working 
for all (hkl) planes, whereas Jaswon & Dove's method 
does not apply directly if h, k and l are not co-prime. 
The second example is a problem posed by the 
extremely high data-collection rates of a television type 
of area-detector diffractometer and the solution was 
especially designed for its high computational speed. 

Example (1) 

The determination of  a unit ceil of  the lattice which 
lies on the (hkl) plane. 

Lemma" A primitive unit cell of the lattice lying on 
the (hkl) plane can be found by applying the 
generalized form of Euclid's algorithm to the vectors: 

1 1 1 
h * = ~  , k * = - -  , I * =  

(kll) (llh) (hlk) ' 

where round parentheses containing numbers separated 
by vertical bars represent the greatest common divisor 
of those numbers. 
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Fig. 2. The redundant set of vectors a, b, e generate the lattice 
shown, but no two of them can be used as the edges of a primitive 
unit cell. 

Proof: The (hkl) plane passing through the origin 
will always contain the vectors h*, k*, 1", since 

[h,k,l].h* = 0. [h,k,l].k* = 0, [h,k,l].l* = O. 

The area, S, of the unit cell of the lattice generated 
by, say, h* and k* alone is given by their vector cross 
product: 

S = h* x k * -  - -  
(kll)(llh) ' 

but, as shown in the Appendix, the area of the primitive 
cell of the lattice on the (hkl) plane is given by 

S p -  (hlkll-------~ ' 

which is smaller by the factor 

ISI l(hlkll) 
- -  - -  - -  - -  r ,  

ISpl (kll)(llh) 

so that h* and k* do not generally form a primitive unit 
cell. 

The equation 

I ° 0jill p h * + q k * + r l * - -  l/(kll) 0 h/(hlk) I = 0  

Lk/(kll) h/(tlh) 

describes a triangle of sides ph*, qk* and rl*. The lowest 
whole-number solution is 

P = 1 Ik(llh)l" 
(h(kll)lk(llh)ll(hlk)) l l(hlk)J 

With the equation derived in the Appendix, this reduces 
to 

P = (hlkll) Ik(llh)l" 
(hlk)(kll)(llh) [l(hlk)J 

Hence, if, say, h* and I~* are used to define a lattice, the 
smallest multiple of l* which is a lattice point is 

l(hlkll) 
rl* = I*. 

(k~l)(l~h) 

The primitive cell of the lattice generated by h*, k* and 
l* is therefore smaller by the factor r than the unit cell 
of the lattice generated by h* and k* alone. 
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However, the ratio IS I/I Spl is the same multiple, r; 
thus the lattice which can be generated by h*, k* and 1" 
contains every point on the (hkl) plane. The lemma 
stated above must follow since the application of 
Euclid's algorithm to these vectors must result in a 
primitive unit cell of the lattice they generate. 

As a practical example, consider the (529) plane first 
discussed by Jaswon & Dove (Fig. 3). The vectors 
h*, k*, 1" are 

h* = , k* = , !* = LI 
To apply Euclid's algorithm, join !* and h*, say, to form 
the matrix 

a ~ 

Then the inverse of a is 

a -1 ~ 
5 0 

~ 2 

, (250) 

,\ 
q 

D 
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i 
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Fig. 3. A view of the (529) plane showing the vector k*', which is 
equivalent to k* in the lattice defined by I* and h*. It can be seen 
that this vector and either of I* or h* could be used as the edges 
of the primitive unit cell of the lattice on this plane. 

For p = k*, (1) becomes 

k*' = fro r~ & 
9 

--'fI-6 

We now replace one of the columns of a with k*' and 
obtain 

a f ~ . 

Repeating the application of (1) to the remaining 
vector, h*, gives h * ' =  0; a '  therefore represents a 
primitive unit cell of the lattice lying on the (529) plane. 
This can be checked by observing that the cross 
product of the two columns of a' is the same as the 
indices of that plane: 

Example (2) 

The enumeration of  the lattice points in a non- 
primitive cell. 

Lemma: The set of crystallographically distinct 
points of a lattice g' in a non-primitive cell z~ can always 
be found by enumerating the contents of another 
non-primitive cell, ,z +, whose index matrix, A +, is 
diagonal (Fig. 4). 

• a 2 . . . .  

/ a1!~ i i  i i ~  

®i F ! 
Fig. 4. A view down e 3 of a supercell z~ and the orthogonal cell z~ +, 

containing equivalent lattice points. The numbered areas of the 
orthogonal cell are shown packed into the original supercell. 
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Proof: Consider a unit cell e of a lattice go whose 
defining edges are represented by the columns of a 
matrix e and also another unit cell e of a lattice d 
whose volume is N times greater, represented by the 
matrix a. Suppose that every point of the lattice d is a 
point of the lattice go; then ~ is a non-primitive cell of 
the lattice go given by 

a = eA,  ( 2 )  

where the index matrix A, whose determinant is N, is 
composed entirely of whole numbers. Given a vector 
whose indices are p in the d lattice and n in the go 
lattice, we can write 

ap = en. 

For all matrices that represent unit cells, this implies 
that 

p =  A- in .  

Now suppose that the first component of n is N, the 
determinant of A, and all the others are zero; then 

n = N l  1, 

where I l is the first column of the unit matrix. Hence 

P = NA -1 11 = adj (A) 11, 

which is the first column of the adjugate of A, since 

adj A adj A 
A - l - -  __ 

det A N 

If the components of p have no common divisor 
higher than one, then there is no shorter vector in the 
J lattice in the same direction. Thus all of the vectors 
2e l, 2 = 1, 2, 3, ..., N, where e 1 is the first column of e, 
will be crystallographicaUy distinct in the ~¢" lattice. 
Since there are N of them, they must represent all of the 
points of the lattice go in the cell 6. 

If, however, p does have a common factor, say N' ,  
then the vector (N/N')e x will be a vector of the d 
lattice and only the vectors 2e 1, 2 = 1, 2, 3 . . . .  , N/N', 
will be distinct, being repeated at intervals of (N/N') el. 

A view of the go lattice in the direction of e~ is the 
same as a view of the lattice go' of one less dimension, 
spanned by all the other vectors in e. Similarly, a view 
of the ~" lattice in the direction of e I is the same as a 
view of the lattice J "  generated by the vectors in a* 
obtained by ignoring the e I components of the vectors 
in a. If we were able to find all of the points of the go' 
lattice in one unit cell of the J "  lattice, we would then 
be able to find all of the points of the go lattice in one 
unit cell of the J lattice simply by adding the first 
(N/N') multiples of e I to them. Thus, the problem has 
been reduced by one dimension and it is necessary to 
find the unit cell 6' of the lattice d '  to make use of this 
fact. The projection of ~ down e I yields the same 
lattice, ~¢ ' ,  as can be generated by the projections a* 

of the vectors a defining d .  Therefore, the vectors a' ,  
defining the unit cell 6 '  of the d '  lattice, can be found 
by applying Euclid's algorithm to the vectors in a*. 

To find the cell z~', create a new matrix e* by 
replacing the first column of e with the null vector, 0, 
and also create a further new matrix, e ' ,  by simply 
removing the first column of e altogether. Then, 8' is 
the unit cell of the lattice go, of one less dimension than 
go. The injections a* of the vectors in a onto the 
sublattice go' are given by an equation similar to (2): 

a* = e*  A. 

Since a* is an injection of a into one less dimension, it 
will have one column more than needed; Euclid's 
algorithm can be used to find the unit cell, z~', of the 
lattice it generates. To find the points of the go' lattice in 
6' ,  we need the index matrix: 

A'  = e r - I  a'. 

We are now able to repeat the above procedure whence 
we shall obtain a further common factor, N' ,  and yet 
another index matrix of one less dimension still, 
namely: 

A "  = e " - I  a ' ,  

eventually stopping when the product of the common 
factors N' ,  N"  . . . .  is N, the total number of points of 
the go lattice in the cell 6. All subsequent common 
factors must be unity, so they do not need to be 
evaluated explicitly by the above procedure. 

The contents of the orthogonal non-primitive cell z~ +, 
whose index matrix 

0 

A + = 0 N'/N" 

0 0 N"/N'" 

is therefore diagonal, can be enumerated directly by 
counting. They will not normally all lie in the same cell 
of the s¢" lattice, but can be grouped together by 
application of (1) (see Fig. 4). 

As an example of this algorithm, consider the 
problem (shown in Fig. 4) of finding the lattice points 
which lie in the non-primitive cell whose edges are given 
by the columns of the index matrix 

A =  4 0 . 

0 1 

Its adjoint is 

a d j ( A ) =  2 6 

0 0 2 

and its determinant is N -- 28. 
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The first column, p, of the adjoint has a common 
divisor o f N '  = 2, so N / N '  = 14. Taking the unit matrix 
as e, we get 

e* = 1 and e' = , 

0 

which defines 

a * = e * A =  0 1 4 = 

0 0 0 

Applying Euclid's algorithm to a* gives: 

a ? ~ , 

which implies that 

I: ' :]E I: :1 A '  = e ' - ~  a '  = = . 

0 

4 . 

0 

This has reduced 
Repeating it, we get 

The first column of 

the problem to two dimensions. 

~] and d e t ( A ' ) = N ' = 2 .  

the adjoint has no divisor greater 
than one, so N"  = l, and N ' / N "  = 2. 

There is no need to go any further since N"  = 1, so 
N " ' =  1. We now know all the terms necessary to 
define the cell ~+ represented by the index matrix A +: 

0 : l L14 0!] 
A + =  0 N ' / N "  = 0 2 . 

0 0 N " / N "  0 0 

Examination of Fig. 4 will show that the points in z~+ do 
exactly fill the cell z~ when collected together. 

The author gratefully acknowledges encourage- 
ment and advice from Drs U. W. Arndt, R. A. 
Crowther and A. Klug. The work was supported by a 
Postgraduate Training Award from the Medical 
Research Council of Great Britain• 

A P P E N D I X  

(1) The area of the unit cell on the (hkl) plane can be 
found simply by observing that the dot product of this 
area, Sp, with the normal separation, R, of the (hkl) 
planes is the volume of one primitive unit cell, that is 
unity. Thus, we have 

Sp.R = ,~p R = 1, 

which implies that 

Sp = R -I. 

However, R -1 is the shortest vector in the reciprocal 
lattice in the [h,k,l] direction. This is given by 

[ h,k,t] 
R - , _  

(hlkll) ' 

which immediately gives the area required: 

(2) The equation 
/ \ 

(hlkl l) ~h(kll)lk(l lh)ll(hlk)) = (h l k) (k l l) (ll h) 

can be proved as follows. 
Any three numbers, h, k, l, can be factorized as 

h = t t f l 2 f l 3  71, k = aft3 fl172' l = aft1 ~2 73' where 
(hlkl l)  = a, (h lk )=af t3 ,  (k l l )=af t1 ,  ( l l h )=  afl2. This 
implies that 

(h lk l l ) (h(k l l ) lk ( l lh) l l (h lk) )  

= a(Ctfl2 f13 71 aflllaflafll 72 afl21afllfl2 73 o~f13) 

= a3 p, P2 ~3 

= (hlk)(kl l ) ( l lh) .  
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